
Abstract. With the recent occurrence of the 30th anni-
versary of the first quantum mechanical continuum
solvent code (Rinaldi D, Rivail J-L (1973) Theor Chim
Acta 32:57), it seems like an appropriate moment to
briefly review the variety of continuum QM models now
available. This paper begins with such an overview,
before shifting the discussion to a critical examination of
some aspects of the basic theory, taking as the definition
and evaluation of the solvation energy as an example.
Advantages and disadvantages of using continuum-
discrete models are examined, with particular attention
paid to the evaluation of the solute’s response proper-
ties. Some guidelines, and an operative definition of
specific solute-solvent interactions, are presented.Then
the paper moves on to examine problems regarding
solutes of very large size, as well as complex systems. An
example of the latter is the surface enhancing properties
of large metal cluster aggregates with respect to the
optical properties of a chromophore in a liquid med-
ium.The paper ends with some extrapolations to the
near future, mostly based on the material presented in
the preceding sections.
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The birth of continuum quantum mechanical descriptions
of solvent effects

The title chosen for this contribution to the international
conference held in Nancy stresses the desire to com-

memorate an important anniversary in the evolution of
the quantum mechanical description of molecular sys-
tems: the birth of the continuum quantum description of
solvent effects.

Continuum quantum models represent an extension
of the classical and semiclassical models developed in the
past (outstanding examples are the models of Born [1],
Kirkwood [2], and Onsager [3]) to describe some fun-
damental properties of solutions. The continuum
quantum models, like the classical and semiclassical
models, are based on the description of the liquid med-
ium as a dielectric unstructured fluid, but they add to it a
detailed quantum mechanical description of the solute.

Nancy is an appropriate place for this commemora-
tion, since it is the place where Jean-Louis Rivail per-
formed the first quantum-mechanical calculations on
molecules that included continuum solvent effects [4],
proposed the first QM continuum solvation codes [5],
and where he consequently developed one of the most
important schools of quantum chemistry, at which the
study of solvent effects play a very important role. The
two papers I have cited represent the cornerstone of
the large and systematic work produced over the years
by the Nancy school on this subject.

However, the initiative shown by Rivail, with the help
of his trusted coworker D. Rinaldi, of addressing sol-
vation problems using quantum mechanical tools, was
not entirely from ‘‘out of the blue’’. It was, on the
contrary, a personal response to the challenges stimu-
lated by a limited number of scientists from the pre-
ceding generation, working in France and in Italy, with
strong ties and close contact, in competition and also
collaboration with each other, and all having selected
the new-born discipline of quantum chemistry as the
main subject of their studies. Pullman and Daudel in
Paris, Scrocco in Pisa, to mention just the leading lights,
shared the same view about the role quantum chemistry
should have in the context of chemistry as a whole. Let
me stress this point: quantum chemistry addressing real
chemical problems. The scientists I have just mentioned
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also shared the positive characteristics of being open to
new ideas and of giving a plenty of freedom to younger
coworkers to express and to elaborate personal ideas.
Their work led to numerous important results in various
fields. To quote a few: ab initio codes for polyatomic
molecules; semiempirical codes for large molecules; the
interpretation and dissection of molecular interactions;
the first ab initio descriptions of reaction mechanisms;
several methods for exploring solvent interactions.

Consideration of the solvent was of course compul-
sory during the conception of quantum chemistry, cul-
tivated in our Franco-Italian community. There is no
real chemistry without solvent. The choice of continuum
models was also almost compulsory because of the
limited computer facilities available in our community.
Continuum solvation codes were originally developed in
Nancy, Paris and Pisa. I have already mentioned Rivail,
and to his name I now add others (summarized in
Table 1). These codes were originally developed by a few
small groups, each comprising three persons or less on
average, each of which came up with different solutions
to the same problem. The solutions reflect the personal
experience of the elder researcher.

In his first papers, Rivail focused on the electric
properties of molecules, dipole moments and polariz-
ability, reflecting the interests aroused by his collabo-
ration with Barriol, an eminent spectroscopist, who
shared with the other leading lights I mentioned an
appreciation of the potential of quantum chemistry,
and understood the importance of giving freedom of
research to valid young coworkers.

Claverie began with the formal analysis of non-
covalent interactions, and he did excellent work in this
field, which still constitutes the basis of the theoretical
framework for this important part of chemistry. The
first solvation topic he considered was related to dis-
persion interactions [6], an aspect of solvation not fully
developed in the models of the first half of the previous
century. To do this, at first he paid less attention to the
development of combined QM solvation codes in which
the electrostatic part, mostly related to the charges and
local moments of the solute, plays the main role. Only in
later years, after a systematic analysis, did he develop his
ideas into a full QM procedure for treating solvent
effects, in which continuum and discrete representations
of the solvent are combined [7].

Tapia [8] took advantage of the experience gained
from working at the laboratory of Professor Daudel,
and developed a proposal based on the Onsager model
[3]. I remember Orlando Tapia’s satisfaction when he

announced to me in Paris that he had just obtained good
results with a continuum solvation code (he also offered
me dinner, a rare event!). The paper was published a
short time after, in a very elegant form, from Uppsala
where Tapia had moved to. The intervention of Gos-
cinski in this paper indicates the interest of other
European groups in continuum solvation models.

The version developed in Pisa [9] was a product of
our studies on non-covalent interactions, performed in a
different way to those done by Claverie, and based on
the examination of the full QM description of dimers
and larger molecular aggregates. This approach was
permitted by the availability in Pisa of ab initio codes for
molecular calculations, the first in Europe and among
the first in the world. These analyses led to a rationale of
intermolecular forces based on a Hartree partition of the
cluster, followed by a description of the quantum
localized molecular subunits interacting according to
classical interactions, to which only small quantum
corrections were necessary [10]. The prominent role
played by the molecular electrostatic potential [11] in
such analyses paved the way to the formulation of an ab
initio QM continuum solvation code [12].

I have quoted here four different approaches pro-
duced within a restricted number of groups with strong
ties but able to formulate independent solutions to a
common problem, that of introducing quantum chem-
istry into the realm of solutions. The approaches are
different, as I have remarked, and it would be a good
idea to characterize them better here. However, before
doing so, it is convenient to continue a bit more on the
history of continuum solvation methods.

In the following years other methods were created,
almost all in Europe, with a notable exception. I have a
strong feeling that the interesting (or good) perfor-
mances given by some of the first generation codes I
have mentioned previously spurred on, and gave hints
to, other researchers to develop new codes.

I have listed a few examples of the different proposals
formulated in the ten years from 1983–1993 in Table 2.
These examples are selected for the importance they
have had to the evolution of this field, or because they
represent other methodological alternatives to the basic
problem. I quote only the first paper for each author.

In the following ten years (1993–2003), several other
QM methods were published, and at present every
computational package of molecular calculations has
quantum mechanical continuum solvation codes, more

Table 1. The first continuum QM solvation codes (from the
French-Italian group)

Name Place, time Reference

Rivail Nancy 1973–76 4,5
Claverie Paris (1972) 1988 6,7
Tapia Paris–Uppsala 1975 8
Tomasi Pisa 1981 9

Table 2. Other continuum solvation codes from the period 1983–
1993

Name Place, time Reference

Karelson Estonia (USA) 1986 13
Mikkelsen Denmark 1987 14
Karlström Sweden 1988 15
Cramer USA 16
van Duijnen Netherlands 17
Klamt Germany 18
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or less complete and more or less flexible, according to
the package.

I have not reported continuum solvation methods
based on a classical description of the solute in Table 2,
although some among them have gained a remarkable
popularity, especially in the study of complex biological
molecules. These approaches represent an alternative
approach to introducing solvation effects into compu-
tational chemistry, but they lack the flexibility for
treating chemical problems of very different nature, an
aspect that constitutes the main subject of the present
analysis. There is one good reason, however, to mention
them. The most popular codes belonging to this family,
often called Poisson-Boltzmann codes, use another
approach for describing the electrostatics of solute-
solvent interaction effects, of which there are no exam-
ples in the two tables I have mentioned. We shall
comment later these approaches.

Classifying QM continuum solvation codes

We now have enough examples of continuum solvation
methods to attempt a classification according to some
key features.

Three of the four initial codes of Table 1 were based
on semiempirical descriptions of the solute (the only
exception is the code of Pisa); the same remarks hold for
the initial versions of most codes of Table 2. This is not
a characterizing feature, however. In the 1970s the ab
initio codes were extremely expensive and not commonly
used; of these, the methods which have evolved further
became more sophisticated ab initio descriptions of the
molecule, beyond the Hartree-Fock level. Among the
first of these are those of Nancy and Pisa, which con-
tinue to be the most complete codes at present. Among
those reported in Table 2, the codes of Mikkelsen use of
a high quality description of the solute and of its prop-
erty; the codes of van Duijnen, Klamt, and Cramer use
use ab initio descriptions of good quality. The other
codes have been abandoned or purposely kept at a low
level for specific reasons. It must be remarked that the
most flexible codes, and we quote again the SCRF code
of Nancy and the PCM code of Pisa, to which we shall
later restrict our attention, have the ability to treat the
solute at almost all of the ab initio levels now available
in quantum chemistry, as well as with solutes described
with the aid of semiempirical wavefunctions, and with
descriptions based on empirical fragment potentials,
with or without polarization. The continuum approach
is very flexible and does not place limits on the quality of
the solute description.

Electrostatic interactions

A characterizing feature of QM continuum models is the
way in which the electrostatic interaction term is treated;
namely how the solute charge distribution is used to

define the molecular potential giving rise to the solvent
reaction potential, and how the solvent reaction poten-
tial is described. Here we may make reference to the
three classical models quoted as references [1, 2, 3].

The first formulation given by Rivail corresponds to
the Onsager model [3]: the potential is originated by the
molecular dipole, and the reaction potential is described
in a corresponding way. The same model has been used
by Tapia, by Karelson, and by others.

The second paper of Rivail extends the description.
The molecular potential is described in terms of a mul-
tipole charge distribution. It may be assimilated to the
Kirkwood model [2], which however lacks the essential
feature of the back polarization of the solute under the
effect of the solvent reaction potential, a feature intro-
duced by Rivail in his method. This feature is rightly
emphasized by the acronym assigned to the Nancy
model, SCRF, which means self-consistent reaction
field. Mikkelsen’s model also belongs to the SCRF
family. More recent versions of Karelson’s model (used
mostly in collaboration with M. Zerner) adopt a multi-
pole expansion and are of SCRF nature.

Rivail’s model has further evolved since then. It is
available for use with distributed multipole expansions
(with multipole expansions centered in different points
of the molecule and regarding separate portions of the
charge distribution). This extension eliminates a draw-
back of single-center multipole expansions, which are
valid, at the limit of complete expansion, only for points
in the space lying outside a sphere containing all of the
charge distribution. The distributed expansions extend
the use of the method to molecules with an irregular
shape, for which part of the solvent lies inside the unique
sphere containing all of the charge distribution of the
solute.

Claverie explored several versions, but the final ver-
sion [7] uses multipoles (dipoles and quadrupoles) dis-
tributed on atoms and bonds.

The Karlström method [15] has been included in
Table 2 because it represents the only ab initio code that
makes use of image charges to assess the reaction po-
tential. To this end the molecular distribution is reduced
to a set of local multipole distributions (generally
interrupted at the dipole level). The image method is
amply used in electrostatics, and can also be applied to
charge distributions inside a sphere (Friedman [20]).
However, in this case it is an approximate method, and
for this reason it is not well-suited for refined ab initio
calculations.

Cramer’s code [16] (actually Cramer and Truhlar; I
have used a single name for brevity in the tables) is a
generalized version of the Born [1] model (GB), and so
the molecular charge distribution is reduced to a set of
atomic charges. The generalization of the Born model to
polyatomic molecules (there are other more recent ver-
sions of the GB model, all sharing this characteristic)
requires a modification of the Coulomb interaction
operator because the Born atomic spheres are inter-
locking. The Coulomb operator modified in this way
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contains some parameters that give a semiempirical
flavor to the GB methods.

Van Duijnen’s approach to solvation [17] (of which
there are different versions) uses continuum descriptions
of the solvent as supplementary corrections to an original
direct reaction fieldmodel based on discrete subunits. The
origins of this code date back to models used to describe
molecular polarizabilities, with applications to solvation
problems using discrete molecules only [21].

Pisa’s codes [9], which will be indicated in the fol-
lowing with the acronym PCM (polarizable continuum
model) use another version of the classical electrostatic
description not considered in the three classical models.
This version is based on the definition of an apparent
charge distribution (ASC) on the cavity surface. This
surface charge is given directly by the normal compo-
nent of the electric field generated by the molecular
charge distribution q(M). The molecular wavefunction is
therefore used directly, without reduction to atomic
charges or to multipole expansions. In a more recent
version, called IEF-PCM [22] (IEF stands for integral
equation formalism), the molecular electric field on the
surface is replaced by the electrostatic potential. This
formulation, not present in electrostatic handbooks, is
formally completely equivalent to the standard defini-
tion of apparent surface charges, but computationally is
faster and more stable (for example in the calculation of
derivatives).

Klamt’s codes [18] also use apparent surface charges,
computed with the molecular potential, but using an
original trick: performing the calculations for a hypo-
thetical liquid metal and then applying an empirical
correction to the results (the alternative formally correct
formulation given by IEF was not yet known at that
time). This correction works well for liquid with a high
dielectric constant and it is not appreciably sensitive to
the analytical form one adopts (there are several versions
of it, given by other authors).

As remarked above, I have not reported on semiem-
pirical Poisson-Boltzmann codes, of which there are now
also QM versions, in Tables 1 and 2. They are to be
considered here, however, because they complete the set
of methods used to describe electrostatic solvation
effects. These P-B methods are also called finite differ-
ence or finite elements methods (FDM or FEM,
according to the technical details used in solving the
integro-differential equation) because they are based on
the definition of a 3-D grid covering the whole space
filled by the continuum solvent. The mesh of the grid
may be refined in terms of the proximity of the solute in
order to reach better accuracy, but these methods are in
principle more computationally intensive and less accu-
rate that the boundary element methods (BEM or ASC),
at least for isotropic solutions. Grid-based methods are
also used in other approaches to introduce some dis-
creteness into the description of the solvent, putting, for
example, polarizable point dipoles at the grid points.

To conclude this section, we remark that both the
methods based on complete distributed multipole

descriptions and those based on the apparent surface
charge distributions give formally exact descriptions of
the electrostatic problem one has to solve in continuum
solvation problems. 3-D grid methods also tend to exact
calculations. The same cannot be said for the image and
the GB methods, which have inherent approximations.

The shape of the cavity

A second feature useful for characterizing methods is the
shape adopted for the cavity in the continuum medium
in which the molecule is contained. The concept of sol-
ute cavity is essential in all continuum methods, and its
sharpness represents one of the points often invoked in
criticisms of the continuum methods. It should be said
that sharpness is not a big problem, as shown in the past
on model systems, and quite recently demonstrated by
non-sharp ab initio codes (such recent developments will
not presented here, however). What is more important is
the shape of the cavity. The classical models [1, 2, 3] all
used a simple cavity in which the surface is given by a
fixed value of one of the coordinates of the reference
frame; for example the sphere in polar coordinates. This
definition greatly simplifies the mathematical formula-
tion of the electrostatic model when multipolar expan-
sions are used, but the description of the reaction field
may turn out to be severely distorted for molecules far
from a spherical shape.

The cavity shapes adopted by Claverie in his
attempts, and by PCM, were interlocking van der Waals
spheres at first, and in later versions were original codes
defining both solvent accessible and solvent excluding
surfaces (SES and SAS)[23]. The other models of
Table 1 adopted spherical cavities.

Rivail quickly extended the SCRF method to cavities
with an ellipsoidal shape [24] (the implementation of this
code was a big mathematical achievement) and then also
provided codes for cavities of irregular shape.

Among the methods listed in Table 2 are codes, like
that of Mikkelsen, that have been extensively used in
recent years, and that still use a sphere for the cavity, but
the general trend is to move to molecularly shaped
cavities, This is routinely done, for example, in Cramer’s
and other GB methods, in Klamt’s method (it is not a
big problem for ASC methods to adopt whatever cavity
one wishes to use, and GB methods are almost com-
pelled to use a set of atomic spheres giving a cavity with
a shape similar to that of the molecule).

Before moving on, let me stress again that the shape
of the cavity is an important parameter.

Non-electrostatic interactions

It has been well known for a long time that solvation
effects are not limited to electrostatic terms. In fact,
Claverie started with a description of dispersion terms,
and Rivail included dispersion effects, even in his first
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paper [4], represented on the basis of the dipole
approximation elaborated by Linder [25]. The other
methods reported in Table 2 were limited to the elec-
trostatic terms. PCM, originally presented as a pure
electrostatic method, was given a complete description
of the whole machinery of the solvation process,
including dispersion,in the same year [26].

An additional term, that is treated separately in
continuum methods, takes into account the energy spent
forming the cavity (in which the QM solute will be later
defined) in the liquid. The calculation of the cavity for-
mation energy is a theme on which there have been
proposals since the early 1930s [27]. However, we shall
not discuss them here, and we simply state that the best
codes have reasonable methods to compute this term
too.

Other methods, for example GB, introduce correc-
tions to the electrostatic description in the form of an
empirical function, which has the surface of the cavity as
an argument, and addresses the descriptions of disper-
sion, repulsion, cavity formation, and other terms of
local origin. The empirical nature of this expression
allows us to include energy contributions of disparate
physical origin in a simple formula, but also forbids us
to make improvements to some of these terms, that may
play a very different role in different material systems
and in different phenomena.

We shall consider the various contributions to the
solute-solvent interaction potential, and to the solvation
energy again in the next sections, because they are still
open to improvements.

Other features of the continuum methods

There are many other features of the codes that can be
used as parameters to characterize methods, and the
presence or absence of some features should be the cri-
terion a user adopts when selecting the code most
appropriate for the investigation he is planning. The
number of these features is currently quite large (solva-
tion codes have progressed tremendously over the last
thirty years) and it is not possible to give a compre-
hensive overview here. Therefore, we briefly quote a few
of them, just to give an idea of the potential of several
solvation codes: the availability of analytical codes for
first and second derivatives with respect to nuclear
coordinates; the capability of describing two or more
solutes separated by the solvent; the description of non-
equilibrium situations; the quality of the descriptions of
excited states and of their photophysical evolution; the
description of the solute’s properties expressed as
response functions with respect to external fields of
electric and/or magnetic nature; the ability of codes to
describe solvation effects for solutes of very large size.
Many other questions can be posed by a potential user
with a reasonable hope of finding the desired answer,
because the most important codes grow rapidly, adding
more and more features. Since we cannot give potential

users all of information they need to select the most
appropriate code here, our advice is to start the analysis
from PCM and SCRF, which are the most complete
codes, and if the results are not satisfactory, move on to
others.

Review of QM continuum solvation methods

As mentioned several times over the preceding pages,
there has been a rapid evolution in QM continuum
solvation codes in the last thirty years. However, we do
not have the space to survey this evolution in any real
depth here, even if we limited ourselves to the two main
codes I have mentioned, SCRF and PCM. There are two
long reviews in Chemical Review that partly document
the evolution of continuum solvation methods. In the
first, published in 1994 [27], there is a detailed descrip-
tion of the historical evolution until 1993; in the second
[28] there is a update of this review to cover 1998–1999,
paying particular attention to the large number of ways
the various methods have been used, and complement-
ing several reviews written by the same authors in pre-
ceding years.

In 1995, Rivail wrote a short review [29] in which
some space was dedicated to the important methodo-
logical innovations that were being implemented into
SCRF at that moment. At the Conference in Nancy, a
poster by M. F. Ruiz-Lopez and W. Harb was pre-
sented that reviewed the SCRF code, including the most
recent additions [30]. I hope that the readers will find an
enlarged version of this poster in the Conference papers.

On our part, since 1994 we have written a sizeable
number of papers and contributions to handbooks
related to various aspects of the QM description of
liquid systems. Among them, I have selected three
overviews that are rich in detail about PCM [31, 32, 33].
The latter is a short history of the evolution of PCM,
that should have been regularly updated on our site but
unfortunately has not been for the last two to three
years, and is currently without a direct link to citations
(an update will be probably be performed in the next
future). I am not aware of any more recent detailed
reviews. Surely the recent advances merit a new review
of what has been done, to give more advice to users and
to suggest what could be done in the near future.

Having therefore presented some general features of
continuum QM solvation models, we now move on to
consider some specific aspects of the models that require
more detailed examination. Following this, we will dis-
cuss more advanced extensions to these procedures.
These extensions form the basis of a possible answer to
the question suggested by the title of this review: what
are the prospects for the near future?

For brevity’s sake, our detailed examination will be
limited to a few points (other aspects would require an
analogous analysis), and I will base my analysis on
PCM, using notations and concepts we have used for
PCM. It must be said that a similar analysis could have
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been formulated using SCRF notations and concepts,
but the choice I have made obviously simplifies my task,
being more confident with PCM notations, and with the
form in which common problems are cast in the PCM
codes.

Energy in continuum QM solvation methods

It is convenient to start this analysis from the basic
energetic quantity for all solvation codes. The basic
energetic quantity in ab initio continuum methods is
easy to define. It corresponds to the work spent in
assembling the appropriate numbers of electrons and
nuclei necessary to build up the molecule of interest
into an opportune cavity of the homogeneous liquid.
During this process of formation, there is also some
work spent to polarize the liquid. This quantity has the
status of a free energy, and will be called G(R) here.
The symbol R indicates that we are working within the
Born-Oppenheimer (BO) approximation and that the
molecule (the solute) has a fixed geometry R.

This definition parallels that for the energy of the
molecule in vacuo: E(R). In this case too the energy is
the work spent in assembling the molecule from non-
interacting electrons and nuclei.

However, behind this analogy some important dif-
ferences are hidden. E(R) is the work spent at 0 K, and
at this temperature energy and free energy coincide in
the BO approximation. In contrast, G(R) is computed
with an effective potential, depending on the response
function Q(r,s) of the medium, and this function
depends on temperature. In the simplest versions of the
continuum model, Q(r,s) is reduced to the electrostatic
response, expressed in terms of the dielectric constant
of the medium, �, and the dependency on the solvent
coordinates s is reduced to a step function, zero inside
the cavity, constant at the exterior. Even in this simple
case there is a well-defined dependence on the tem-
perature, because the dielectric function � depends on
T.

To directly compare E with G – for example to
compute the solvation energy – one has to make the two
expressions have quantities with the same thermody-
namic status. The most reasonable thing to do is to link
both expressions to get the full free energy of the two
systems at the same given temperature T.

For the system in vacuo, one has to add contributions
due to the internal motions of nuclei and due to the
rotation of the whole molecule (translations are elimi-
nated by adopting Bein Naim’s analysis of the solvation
process [34])

GT
vacðRÞ ¼ E0

vacðrÞ þ GT ;vac
vib;rot ð1Þ

The same must be done for the system in solution:

GT
solðRÞ ¼ GsolðRÞ þ GT ;sol

vib;rot ð2Þ

It is not necessary to examine the details of the cal-
culations of these additional entropic calculations here.
It is sufficient to remark that for the system in solution
we need at least the Hessian matrix elements (in other
words a knowledge of the second derivatives of the en-
ergy with respect to the nuclear coordinates) to compute
vibrational contributions (in the harmonic approxima-
tion), and that the rotational term presents some prob-
lems, since the continuum model alone is incapable of
giving an estimate for this contribution. This is the first
open problem we encounter. There are models and
approximate formulas to compute this term, but a
physically more robust approach is desirable.

The solvation energy is given as the difference in the
two quantities reported above. There is however another
problem, due to the fact that the equilibrium geometry of
the molecule M is, in general, different in the two phases:

DGT
solv ¼ GT

solðRsol
eq Þ � GT

vacðRvac
eq Þ ð3Þ

Both E0
vacðRÞ and GsolðRÞ define a potential energy

hypersurface for the motion of nuclei. Doubts about the
formal status of the second hypersurface have been
raised for several years.

The search for the minimum in vacuo proceeds using
the standard methods of quantum mechanics, and the
same methods should be applied for the second hyper-
surface. Note however that in practice this is rarely
done. To explain why, and to introduce other aspects of
the method that deserve reconsideration, we recall that
GsolðRÞ is composed of several terms that are never ob-
tained from the same calculation:

Gsol ¼ Gel þ Gdis þ Grep þ Gcav ð4Þ

This expression gives the partition in use in PCM, in
which all terms have well-defined physical meanings.
Other codes, as remarked above, collect the three non-
electrostatic terms into a unique term, empirically
computed.

Geometry optimizations are often performed using
the Gel term alone; in other words only the electrostatic
part of the continuum model (some codes in circulation
only have this component). Should we consider this
practice acceptable?

Actually, the three additional terms are far from
being negligible. In Tables 3 and 4 we report some data
taken from an old paper [35] (with some minor changes)
that allows us to get a feel for the relative importance of
the various contributions, and how they depend on the
chemical nature of the system.

To make this comparison more apparent, the quan-
tities reported in the two tables are actually the com-
ponents of the free energy of solvation (computed at a
fixed geometry of the solute):

DGT
solv ¼ GT

solðRsol
eq Þ � GT

vacðRvac
eq Þ

¼ DGel þ Gdis þ Grep þ Gcav þ DGT
vib;rot ð5Þ
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In fact Gel is a quite large number when compared to
the other components of Gsol; this large value is mostly
due to the work done in forming the molecular charge
distribution inside the liquid, which is not too different
from the analogous work spent in vacuo. So the differ-
ence between these two values (DGel) is more instructive
for this comparison. To simplify comparisons we have
eliminated the last term of Eq. 5, not directly related to
the definition of the free energy hypersurface, from the
tables.

Table 3 shows that non-electrostatic terms in water
cancel each other out to a large extent. However, the
compensation is far from being complete, and in fact an
evaluation of the solvation energy solely based on the
electrostatic term produces considerable errors, as we
can see by comparing the DGel and DGtot rows. It is true
to say, however, that the electrostatic terms dominate
the interaction energy. This fact, accompanied by the
assumption that the non-electrostatic components are
less sensitive than DGel to small changes in the geom-
etry, represents the empirical justification for limiting
the geometry search to the electrostatic component
alone.

This justification is no more valid for non-polar sol-
utes, as Table 4 shows. The dominant term is the dis-
persion contribution, and so the justification for using
the electrostatic component alone is solely based on the
assumption of the larger sensitivity of electrostatic terms
to changes in the molecular geometry.

We do not present data about this assumption for
two reasons. The first is that the numerical data we have
available are rather sparse and none too meaningful; the
second is that accurate calculations of the dispersion
energy contributions are quite rare.

The most reliable code for dispersion (and repulsion)
contributions we know of is that elaborated by Amovilli
and Mennucci [35] and inserted into PCM. In this case,
dispersion-repulsion contributions are treated on the
same footing as the electrostatic ones, and internal
analyses indicate that the level of description of the two
contributions is quite comparable. The data reported in
Tables 3 and 4 are based on this code.

An annoying aspect is that dispersion contributions
computed with this method are quite sensitive to the
quality of the basis set. This means that extensive
scanning of the GsolðRÞ to get critical points could
require more computational effort than those deemed to
be necessary by the user to get the desired geometry. (We
recall that one of the strong points of continuum
methods is the quite remarkable reduction of computa-
tional times with respect to alternative approaches.
When developing codes we must attempt to preserve this
feature, without causing detriment to the quality of the
results.)

There is an alternative way of computing GdisðRÞ and
GrepðRÞ for geometry search, which is extremely inex-
pensive. It is based on the use of empirical dispersion
and repulsion atom-atom potentials. These interactions,
regarding all of the solvent molecules from the solute to
infinity (or to the physical limits of the solution in the
case of systems with a boundary in the liquid phase), can
be recast into a form similar to that used for the elec-
trostatic contribution, namely a finite set of point values,
one for each element, or tessera, of the surface [36]. The
tesserae in the apparent surface charge (ASC) approach
have an area of about 0.4 Å2 in standard applications,
and so the number of local contributions to the disper-
sion energy is low, less than 60 points per atom. Each
contribution requires less than ten floating-point ele-
mentary operations, and so the computational time is
completely negligible.

We stress that this semiclassical description of the
dispersion contribution does not modify the electronic
distribution of the solute. This approximation may be
considered sufficient for determining the energy, but for
applications that address more delicate aspects of the
system, like the solute response properties, the fully
coupled QM definition must be used.

Table 3. Some examples of the relative magnitudes of various
components of DGsolv. Solvent is water. Values in kcal/mol

Solute DGel Grep Gdis Gcav DGtot DGexp

H2O )7.2 +1.7 )4.6 +4.2 )6.0 )6.3
NH3 )5.3 +2.3 )5.7 +4.6 )4.2 )4.3
H2O2 )9.0 +1.9 )6.7 +5.6 )8.3 )8.7
N2 )0.2 +0.7 )3.9 +5.4 +2.0 +2.3
CH4 )0.2 +2.0 )6.0 +6.0 +1.8 +2.0
CO )0.8 +0.7 )4.0 +5.5 +1.4 +2.2
H2CO )5.7 +1.6 )4.7 +6.0 )2.8 )2.2
HCN )5.9 +1.9 )5.6 +6.2 )3.4 )3.2
N2H4 )8.6 +2.2 )8.0 +6.5 )8.3 )9.3
CH3OH )6.1 +2.2 )7.5 +7.0 )4.4 )5.1
C2H2 )3.0 +1.5 )5.1 +6.6 0.0 0.0
C2H4 )1.2 +2.8 )7.1 +7.5 +1.9 +1.3
CH3NH2 )4.7 +2.2 )8.4 +7.7 )3.2 )4.6
C2H6 )0.2 +2.5 )8.8 +8.8 +2.2 +1.8
CH3CHO )6.4 +2.0 )8.6 +8.8 )4.2 )3.5
C2H5OH )6.9 +2.6 )10.0 +9.8 )4.5 )5.0
C3H8 )0.5 +4.3 )12.9 +11.5 +2.4 +2.0
CH3COCH3 )4.8 +3.0 )13.1 +11.6 )3.3 )3.8
C6H6 )2.5 +4.7 )15.8 +12.7 )0.9 )0.9
n-C8H18 )1.3 +8.6 )28.3 +25.0 +3.9 +3.0

Table 4. Other examples of the relative magnitudes of the different
components of DGsolv. Solvent is n-hexane. Energy values in kcal/
mol

Solute DGel Grep Gdis Gcav DGtot DGexp

CH3OH )2.1 +1.5 )7.3 +6.0 )1.9 )1.4
C2H5OH )2.0 +1.7 )9.8 +7.7 )2.4 )2.0
C2H5NH2 )1.4 +1.8 )10.7 +8.0 )2.4 )2.1
CH3COCH3 )1.4 +2.0 )12.6 +8.8 )3.2 )2.5
C6H6 )0.9 +3.1 )15.4 +9.6 )3.6 )4.0
Aniline )2.8 +3.6 )17.5 +11.2 )5.5 )5.4
p-Cresol )2.8 +3.8 )19.3 +12.9 )5.4 )5.9
o-Cresol )3.5 +3.8 )19.3 +12.7 )6.3 )6.3
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As we have just said, the semiclassical description is
based on a choice of empirical function. In distributed
PCM codes, use is made of the Vigné Mader-Claverie
parameters [37]. In the 1980s, we spent some time with
Pierre Claverie attempting to validate these parameters
for their use in PCM, but is must be said that a complete
validation was not performed.

In his first level thesis [38], F. Castelli recently arrived
at sizeable reductions in the computational times of the
QM calculation of dispersion, and we profited from this
reduction in computational times by initiating a sys-
tematic scanning of the empirical potentials available in
the literature. We present in Tables 5 and 6, for the first
time, a limited selection of these comparisons between
different sets of empirical potentials compared to QM ab
initio calculations.

The comparisons reported in Tables 5 and 6 for
n-alkanes and n-primary alcohols, all in water, with the

QM calculations performed at the B3LYP/6–32G**
level.

A complete systematic scanning of the empirical
formulae is a pretty exacting task, since the number of
parameters to scan is relatively large, and each has a
large range of variation. Parameters that should be
taken into account include the chemical nature of the
solute, and that of the solvent, as well as the quality
of the QM description (other parameters that may be
taken into account could be related to excited states
and to non-equilibrium solvation). We interrupted this
scan after the completion of Castelli’s thesis, waiting
for the availability of others to continue. The results
that are available at present (only a small selection are
reported in Tables 5 and 6) indicate that this scan is a
worthwhile pursuit, since it should provide users with
the means to choose the appropriate formulae for
their needs. However, I am also convinced that ab

Table 5. Dispersion energy
contribution for a selection of
alkanes in water, chloroform,
and benzene, as computed using
various approaches (energy
values in kcal/mol)

Solvent Molecule Force field ab initio

Claverie MM3 Amber OPLS HF B3LYP

Water CH4 )6.33 )6.78 )4.40 )4.46 )4.65 )5.47
CH3CH3 )9.01 )9.58 )6.47 )6.46 )7.20 )8.38

CH3CH2CH3 )11.35 )12.56 )8.98 )8.78 )9.27 )10.85
CH3(CH2)2CH3 )13.61 )15.52 )11.53 )11.12 )11.30 )13.26
CH3(CH2)3CH3 )15.83 )18.51 )14.17 )13.52 )13.29 )15.62
CH3(CH2)4CH3 )18.22 )21.03 )16.01 )15.31 )15.26 )17.85

Chloroform CH4 )4.55 )5.95 )4.61 - )5.73 )6.73
CH3CH3 )6.49 )8.38 )6.79 - )8.88 )10.32

CH3CH2CH3 )8.20 )10.55 )8.70 - )11.35 )13.27
CH3(CH2)2CH3 )9.81 )12.59 )10.48 - )13.78 )16.15
CH3(CH2)3CH3 )11.43 )14.64 )12.27 - )16.15 )18.96
CH3(CH2)4CH3 )13.14 )16.81 )14.16 - )18.51 )21.62

Benzene CH4 )5.99 )7.47 )6.40 )6.57 )5.47 )6.49
CH3CH3 )8.53 )10.53 )9.41 )9.52 )8.46 )9.94

CH3CH2CH3 )10.75 )13.23 )12.00 )12.08 )10.81 )12.77
CH3(CH2)2CH3 )12.88 )15.82 )14.48 )14.54 )13.11 )15.53
CH3(CH2)3CH3 )14.98 )18.37 )16.92 )16.95 )15.35 )18.22
CH3(CH2)4CH3 )17.24 )21.12 )19.55 )19.55 )17.59 )20.76

Table 6. Dispersion energy
contribution for a selection of
alcohols in water, chloroform,
and benzene, as computed using
various approaches (energy
values in kcal/mol)

Solvent Molecule Force field ab initio

Claverie MM3 Amber OPLS HF B3LYP

Water CH3OH )7.88 )8.25 )5.53 )5.71 )6.62 )7.24
CH3CH2OH )10.39 )11.47 )8.31 )8.18 )8.92 )10.02

CH3(CH2)2OH )12.68 )14.13 )14.40 )10.08 )10.09 )12.51
CH3(CH2)3OH )14.90 )16.37 )11.97 )11.66 )12.91 )14.91
CH3(CH2)4OH )17.11 )19.42 )14.70 )14.11 )14.89 )17.77
CH3(CH2)5OH )19.50 )22.44 )17.22 )16.44 )16.84 )19.59

Chloroform CH3OH )5.69 )7.25 )5.81 - )8.15 )8.91
CH3CH2OH )7.50 )9.55 )7.87 - )10.99 )12.34

CH3(CH2)2OH )9.16 )11.65 )9.72 - )13.36 )15.31
CH3(CH2)3OH )10.78 )13.69 )11.49 - )15.76 )18.19
CH3(CH2)4OH )12.36 )15.70 )13.25 - )18.10 )20.97
CH3(CH2)5OH )14.05 )17.85 )15.12 - )20.45 )23.77

Benzene CH3OH )7.46 )9.07 )8.01 )8.38 )7.78 )8.55
CH3CH2OH )9.84 )11.97 )10.86 )11.05 )10.48 )11.85

CH3(CH2)2OH )12.01 )14.60 )13.39 )13.51 )12.72 )14.71
CH3(CH2)3OH )14.11 )17.16 )15.82 )15.93 )15.00 )17.47
CH3(CH2)4OH )16.22 )19.72 )18.28 )18.35 )17.21 )20.13
CH3(CH2)4CH3 )18.47 )22.45 )20.89 )20.93 )19.44 )22.81
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initio QM codes will in standard use in the near fu-
ture.

There are other aspects of the basic solvation
procedure that we have examined that also deserve a
critical analysis, such as the cavity formation energy,
the repulsion energy, and the terms related to vibra-
tion and rotation of the solute, but we prefer to move
on now to other aspects of the continuum solvation
procedures.

The definition of the solute and the addition of solvent
molecules

The part of the system that we focus on – that is treated
at the full QM level – does not have to be limited to the
nominal solute M. It may be larger or smaller than this:
there are various good reasons for enlarging or reducing
the size of the area of interest. We shall start by con-
sidering an enlargement of the QM subunit of the system
first.

About the need to include explicit solvent molecules

An enlargement of the QM part of the system may be
done to include some solvent molecules. There are no
formal reasons forbidding enlargements of this type, and
in fact they are often used by people that consider
continuum models to be too crude and lacking in some
aspects of discreteness deemed to be necessary to
describe specific solute-solvent interactions.

Let me consider this point more in detail. It is clear
that an enlargement of the region of interest from M to
M.Sm, were S indicates a solvent molecule, will lead
to an increase in the computational time. There is an
enlargement of the QM region, and conventional QM ab
initio procedures scale with a relatively large power of
the number N of electrons. However, this may be a point
of minor importance when the number m of added sol-
vent molecules is small, and calculations are performed
at relatively low levels of the QM theory.

More important are the consequences of this
enlargement on other aspects of the procedure. As said
before, we have to define critical points on the G(R)
hypersurface of the quantum system, and then we have
to add vibrational and rotational entropic corrections to
get the solvation energy. The weak M-S (and S-S)
interactions included in the quantum system are in
competition with other similar interactions described by
the continuum model. The consequence is that geometry
optimization is by far more delicate than for the corre-
sponding M.Sm system in vacuo; in other words, we
need geometry optimizers of very good quality. The
additional degrees of freedom corresponding to inter-
monomer vibrations are of a floppy nature, not well-
described at the harmonic level and giving important
contributions to the energy. The standard methods of
quantum mechanics used to describe these effects in the

supermolecule picture must be applied with care,
otherwise we will get a serious error in the value of the
solvation free energy, sometimes larger than the confi-
dence bar obtained for continuous procedures using M
alone as solute.

There is another problem for the solvation energies
computed in such a way. The solvation free energy one
wishes to obtain is, in general, that of M alone, and not
that of an arbitrarily selected M.Sm cluster. Other
assumptions and other calculations are needed to get the
desired solvation energy.

The remarks made in the preceding lines do not
forbid the use of solvation clusters to get the solvation
energy, but are simply a warning against the indis-
criminate use of this procedure based only on the
consideration that adding something more detailed
automatically leads to more accurate results.

There are several claims in the literature that the
addition of explicit solvent molecules were found to be
necessary to properly describe conformational or tau-
tomeric equilibria. I have the strong suspicion that a
considerable number of such claims are due to the use of
poor continuum solvation codes or to the imperfect use
of good codes. Over the years, we have re-checked about
a dozen such claims, always finding that the correct
answer was reachable with the appropriate use of con-
tinuum solvation based on the bare solute M.

What are the reasons for such (apparent) failures of
continuum methods? Some have been already expressed
in the preceding pages and there is no reason to repeat
them here. Others are related to the choice of the cavity
and to definition of the solute electrostatic potential (or
field). The cavity must be accurately modeled on the
shape of the molecule, and in doing so attention must
also be paid to the main features of the solute charge
distribution. There are many papers that address the
problem of refining the cavity radii for the various sol-
vents, taking into account the local characteristics of the
molecular charge distribution; I quote just one of them
[39] as testimony to the patient and very useful work
performed over the last ten years by the Luque-Orozco
group in comparing different solvation procedures and
improving PCM.

A typical example of false conclusions reached by
the hurried use of continuum models is that of the
equilibrium between the neutral and zwitterionic forms
of amino acids, almost completely shifted in favor of
the zwitterionic form in aqueous solution. There are a
dozen, or more, papers that say that continuum sol-
vation methods favor the neutral form in water, unless
some explicit water molecules are added to the QM
subsystem. All of the calculations that use a spherical
cavity need additional water molecules to give a hint
of the greater stability for the zwitterion, while accu-
rate cavity models do not need this addition to get a
quite reasonable approximation of the relative free
energies of the two forms, at least for glycine and
alanine that are the only two aminoacids we have
examined.
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Other examples could be mentioned here, but we do
not need to labor the point. However, there is another
issue we should address: how are hydrogen bonds
described by continuum models?

Solute-solvent hydrogen bonds

In Pisa we were motivated to create continuum solvation
codes by empirical numerical evidence, backed by
accurate analyses, that indicated that hydrogen bonds
can be described in terms of electrostatic interactions
supplemented by a repulsion potential. This was the
basis of several papers we published on hydrogen bond
analysis for dimers and large clusters, and it represented
an important point in our development of a semiclassical
model for chemical interactions (called semiclassical
because it is based on a classical description of the
interactions between constituents which are accurately
described at the quantum level). The solvation code was,
at first, a way to test this model. Many checks, repeated
over the years, confirmed the basic validity of the model.
Among such tests, I quote the comparison of the sol-
vation energy of M.Sm clusters with that of corre-
sponding M.Sm)1 clusters plus the solvation of S (a
molecule of water, in our tests). Such tests were also used
to calibrate better PCM, and the results were always
satisfactory; the deviations between the two calculations
are quite small and essentially due to BSSE errors which
can be corrected by CP procedures. (CP corrections also
work with continuum models [40].) In performing such
tests, we systematically paid attention to eliminating
S molecules both connected and unconnected to M via a
hydrogen bond, and we have found no appreciable
changes in the results. It must be added, as a cautionary
remark, that such checks have been performed with a
simplified version of the model (no separate optimiza-
tion for the M.Sm)1 cluster, no dispersion contributions)
and that only a limited number of tests have been per-
formed on the competition between internal hydrogen
bonds within M with solute-solvent H-bonds. In spite of
these limitations, these tests are sufficient for me to
consider with some diffidence claims about the necessity
of introducing explicit water molecules to describe
hydrogen bond effects.

These remarks only regard the energy of the system
and no other properties. There is no guarantee, on our
part, that this semiclassical picture is sufficient to
describe other properties.

My last remark opens the way to another problem:
how can we describe solvation effects on other properties
of the solute? There are a large variety of molecular
properties sensitive to solvent effects, and there is sub-
stantial empirical evidence that solvent effects on prop-
erties cannot be reduced to a unique cause (dielectric
effects or others), for all properties and all combinations
of solute and solvent. The most complex empirical sol-
vation indexes [41] try to combining effects of different
types, with more or less success according to the case,

but without giving clear-cut indications about the
physical origin of such effects. Reference is often made
to vague local specific solvent effects, the nature of which
surely changes for different classes of compounds.

There is a clear need to study such effects more in
detail, using QM procedures.

About the use of explicit solvent molecules
for the description of molecular response properties

We are now entering into a field that is quite complex,
but of remarkable importance. The study of solvent
effects cannot be limited to the solvation energy only, or
to properties related to energy differences, in spite of
their importance in chemistry (we quote as examples the
properties related to equilibriums of various types:
among different conformations or different tautomers;
between reactants and products in a reaction; of distri-
butions of the solute between two immiscible liquid
phases, and so on).

The calculation of solute properties that are indirectly
related to the energy represents the main path to
reaching a better understanding of the complex network
of molecular interactions on which chemistry is based.
Molecular response properties cover an extremely large
variety of phenomena related to very different physical
interactions, and accurate studies of the influence the
medium has on these properties provide the theoretician
with the means to illuminate fine details of the interac-
tions among molecules. For these reasons it is important
to examine the options available for these studies in a
systematic way.

A possible solution is to resort to M.Sm clusters with
m sufficiently large to saturate all local interactions that
have an effect on the property. It is well known that
m=50 is not sufficient to completely describe solvation
effects for a small solute, and so even with a large cluster
there is the need to use a continuum model for most of
the solution, or other procedures like classical Monte
Carlo or Molecular Dynamics simulations. Distant
interactions are to a good extent ruled by electrostatic
interactions, and so classical or semiclassical descrip-
tions like those given by classical simulations or by
continuum models should be acceptable, even for sen-
sitive properties.

The problem is therefore shifted to describing large
M.Sm clusters. The supermolecule approach we consid-
ered in the preceding section is out of the question.
Geometry optimization of such clusters is a very hard
task, and the optimal geometry, even in the case it is
reached, should be followed by appropriate averages to
reach the thermally equilibrated description of the re-
gion of solvent corresponding to the Sm molecules. This
is a computational task even harder than the geometry
optimization

To alleviate the computational effort of this
approach, different options are possible. One consists
of in reducing the quality of the QM description of the
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m solvent molecules using a layered (or hierarchical)
description of the QM cluster. We shall consider this
option in a following section, but it is clear that when
m is large (say 50 molecules) the reduction in compu-
tational times is still not sufficient to make the layered
QM description accessible to currently available com-
puters.

More appealing are the options based on computer
simulations. There is a wide choice of methods here.

First of all we should consider simulations at the
quantum mechanical level, of which the leading example
is the Car-Parrinello method [42]. With this approach, it
is currently possible to treat M.Sm clusters with m=50
or even larger, with all the molecules of the clusters
treated in a consistent way at the QM level and with the
appropriate average. The problem of molecular prop-
erties is then shifted to the quality of the QM calcula-
tion. Several response properties are strongly sensitive to
the quality of the QM calculation (level of the theory,
size and quality of the basis set). A complete QM sim-
ulation fully performed a the level necessary for some
properties still represents a very intensive computational
task, and the best way to proceed, while waiting for
further progress in computing power, consists of moving
to other methods that give a description of the target
solute M with a high level method but that still preserve
the nice features given by the Car-Parrinello method
(namely a quantum mechanical description of the sur-
rounding solvent, with the appropriate averages). There
are several possible strategies to reach this goal, and
some will be commented on here.

An option to consider is given by the use of QM/MM
simulation methods. QM/MM methods represent a very
important improvement in standard classical simula-
tions for a key problem of chemistry, that of chemical
reactions that describe bond forming and bond breaking
processes. The potential of this approach was evident
from the first formulations of the method [43, 44] and
was well-documented in the first comprehensive review,
written by J. Gao (who has since continued to provide
important developments and applications of the meth-
od) about nine years ago [45]. QM/MM procedures have
greatly improved over the last few years, and calcula-
tions may now be performed with descriptions of the
QM part at a relatively good level, for example by using
DFT [46] or MCSCF procedures [47]; a level sufficient to
also describe the response properties we are considering
here (or at least a good number of them). The limitations
of QM/MM methods lie in the MM part. In fact, clas-
sical descriptions of the nearby solvent molecules cannot
be used to investigate the specific effects of the solvent
on the property. The whole equilibrated description of
the solvent given by these simulations is similar, in this
aspect, to the continuum description.

However, simulations can be used in a different way.
From the sequence of Monte Carlo moves or from
Molecular Dynamics steps, some configurations can be
extracted, and their geometries used to define QM
clusters. The desired property is computed on each

cluster defined in this way (without geometry optimiza-
tion, of course), and as final step of the calculation an
average of these values is then obtained.

This strategy must to be better defined, on the basis
of the many options thus for explored. We report here
on some points that characterize the procedure.

The clusters to be selected obviously cannot cover the
whole simulation box: generally a strategy based on a
physical distance criterion is adopted, often with some
constraint on the number m of solvent molecules to be
included in the cluster.

The selected clusters must be representative of the
averaged distribution actually felt by the solute M dur-
ing the evaluation of the property. To this end, use is
often made of parameters drawn from the simulation, in
some way measuring the ‘‘distance’’ between clusters in
the simulation. The final average of the property is often
a simple arithmetic mean, but procedures using a sort of
Boltzmann weight have been also adopted.

The number of clusters used in the average is another
parameter of the strategy. In principle this number is
unconstrained, but there is a tendency to increase it.
There are now calculations on 500 clusters or more.
Such an increase in the number of clusters is probably
due to a lack of confidence in the reliability of the final
average, which is actually performed on a limited
number of randomly chosen specimens.

Procedures of this type have gained a remarkable
popularity in the last few years. They are related in some
senses to ideas expressed by Warshel in various forms in
several papers [48], upgraded for solute properties by
Hush and Reimers [49, 50], and used consistently by
Canuto and Coutinho in recent years [51, 52, 53]. Can-
uto has suggested the acronym SMC/QM for the pro-
cedure he uses: Sequential Monte Carlo followed by
Quantum Mechanics calculations. The adjective
‘‘sequential’’ is a good suggestion, and it should be used
more extensively, even if other procedures sharing
the same philosophy are not well-described by a linear
sequence of steps. I cite here some recent examples of
such procedures [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]
without adding comments, for brevity’s sake.

The present discussion should be sufficient to show
that this field is methodologically quite active: there are
many problems to solve to get efficient and reliable
computational codes, but the outlook is bright, not only
for solvation effects on thermally equilibrated systems,
but also for the dynamical evolution of such systems
(this last topic is quite broad, and of great methodo-
logical interest, but it is one that unfortunately I do not
have the space to discuss here).

We might therefore conclude by saying that there are
methods that are able to compute specific solvent effects
on molecular properties, but we in Pisa are not fully
satisfied with this conclusion.

The reasons for this partial dissatisfaction can be
found by reconsidering the goals that prompted us (and
all the other people reported in Table 1) to create sol-
vation models thirty years ago.
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The idea that ruled our work in those years, and also
in more recent times, was that the real goal of theoretical
investigations into molecular systems is not to compute
a specific property, but to give an interpretation of the
phenomenon. A good number of calculations done for
molecular systems (including almost all of those I am
discussing in this paper) aim to reproduce some experi-
mental datum. Such calculations are necessary to vali-
date and to calibrate computational methods, but
cannot constitute the final goal of theoreticians.

In the last few years, the progress in computational
chemistry has led to a greater confidence in the reliability
of molecular calculations, and it is now a reasonable
goal to use calculations to get chemical information on
systems and processes in parallel to, or instead of, lab-
oratory experiments. The ‘‘sequential’ methods we have
outlined have, at present or prospectively, the right
qualities to reach this goal. The outputs of these meth-
ods are however too complex for the interpretative
analysis we are envisaging. We have therefore moved in
another direction, with an elaboration of the methodo-
logical strategy which is still in progress, and this will be
outlined in the following section.

Towards a theoretical analysis of solvation phenomena

The main criterion for this analysis we have adopted
consists of starting from simple descriptions of the phe-
nomenon, and when necessary, move on to more refined
models. To do it we have to base our descriptions on
phenomena for which there are reliable experimental
data; the era of predictions for unmeasured phenomena
will follow, when the models have been sufficiently tested.

It must be said that in our still limited experience, we
have found that a surprisingly large number of experi-
mental data are not precise or reliable enough, for a
variety of reasons, which includes the use of old and very
crude models to obtain the raw experimental data. This
fact has been documented in some of our papers from
the last few years, and it has compelled us to enter into
direct contact with good experimental laboratories
willing to perform more accurate measurements. The
results have been quite satisfactory in several cases, but
on the whole the moderate reliability of experimental
data represents an obstacle to our research. This said, I
now move on to describe the steps in our strategy.

A sketch of the strategy

A ‘‘simple‘‘ starting description is given by the use of the
continuum model with the QM part limited to the target
molecule M. In many cases, for a large variety of sys-
tems and properties, this model works satisfactorily. In
other cases, for other systems and/or for other proper-
ties, there are sizeable deviations from experiment.

For cases exhibiting deviations, we use the continuum
model again, but with the QM part described by a small

M.Sm cluster, starting with m=1 and progressively
adding more solvent molecules step by step. At each
m an assessment is made on the value of the property.
For small values of m (1–3), geometry optimized clusters
are compared with others selected on the basis of some
hypotheses for the interaction (such hypotheses depend
on the chemical nature of the two components of the
solution). For larger clusters, a variant of the technique
of the sequential methods is adopted, and simulations
are often performed in parallel using rigid or non-rigid
MM potentials.

This stage of the study is terminated when a sufficient
agreement with the experimental value of the property is
reached.

It is possible to summarize the studies performed so
far at this stage of our research program. The studied
properties are those more commonly used in the char-
acterization of chemical substances, namely NMR
shielding, molecular vibrations, and molecular excita-
tion energies, and are accompanied by other more
complex properties, such as IR and Raman intensities,
vibrational circular dichroism, optical rotation, linear
and nonlinear optical properties, and so on. The solutes
are in general small organic molecules, while the solvents
range from water to cyclohexane, covering the whole
range of solvent polarity.

The first conclusion we have obtained from these
studies is that for most property/system combinations
additional solvent molecules are not required in the QM
subsystem to describe the property. In a sizeable number
of cases, there is the need to add one or two solvent
molecules to reach a good description of the property,
and in a quite limited number of cases there is the need
to add a larger number of solvent molecules (typically 4–
6, and in the worst cases about 10).

As expected, some properties are more sensitive than
others, in agreement with experimental evidence; for
example, generally in protic solvents the X–H stretches
require one explicit solvent molecule, and the carbonyl
stretches two molecules, while the other vibrations do
not require explicit solvent at all.

In Table 7 we report some examples of this search of
specific interactions, for nitrogen shielding. Oxygen and
nitrogen shielding are among the properties more sen-
sitive to specific solvent interactions. The examples
reported in the table give a representative view of the
variety of results given by this analysis. The addition of a
second explicit water molecule to (1,2) diazines modifies
the solvent shift by about 0.1 ppm, and for this reason it
has not been reported in the table. Of particular interest
is the comparison of the effect of two solvents, water and
chloroform, on the solvent shift in pyridine and in ace-
tonitrile. Pyridine behaves like the other N-heterocycles:
the water molecule is connected to the nitrogen of the
ring by a hydrogen bond. The behavior of CH3CN is
typical of nitriles, and this behavior is also found for
other solvents such as acetone and DMSO: there are no
hydrogen bonds here and the specific interaction is of
another kind.
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We have not reported the analysis performed in
parallel on the (n–p*) electronic excitations of these
systems in the table. The trend is similar in many cases.
These are aspects to examine in successive stages of the
procedure.

The next step consists of the analysis of the electronic
structures of the QM systems to get a better description
of the property, using the abundant variety of analytical
tools created for the study of molecular interactions in
vacuo.

I am not going to enter into much more detail about
the results from these analyses (the results are provi-
sional and restricted to a limited number of cases); suf-
fice to say that a factor that plays an important role in
these corrections given by explicit solvent molecules is
the electronic charge transfer.

This point leads to an interesting methodological
problem. In the cases in which charge transfer plays an
important role, it is more difficult to assign the value of a
property that belongs to an particular M molecule. Our
naive picture of solutions as being composed of indi-
vidual molecules maintaining their identity shows its
limits here. The charge transfer component of the
interaction energy is not described by continuum sol-
vation methods. All of the continuum methods are
implicitly based on a Hartree partition of the wave-
function of the whole liquid system (and the same hap-
pens for the perturbation theory descriptions of
molecular interactions, to which all of our descriptions
of liquid systems owe a great deal). The development of
a continuum model that includes this effect would be of
remarkable interest, but little has been done so far on
this subject which represents one important issue for the
future development of our theories on solutions.

The analysis based on the dissection and analysis of
the charge distribution can be accompanied by the
analysis of the performance of the various empirical
solvent scales. They are of great use in practical chem-
istry, and a better appraisal of their justifications and
their performances could be quite useful, for instance in
reducing the possibility of erroneous interpretations of
the correlations found by using such functions. Little has
been done toward this end so far, and even less has been
published [56, 65], but the limited numerical evidence

available so far indicates that this approach should be
rewarding.

So far I have expressed opinions based on limited
numerical evidence, and they have to be considered
more as guesses than firmly determined facts. In this vein
of expressing opinions and guesses, I close this section
by discussing a provisional classification of solute-sol-
vent interactions.

Classifying solute-solvent interactions

By tradition, solvent effects are divided into generic (or
general) and specific components. Many theories of
current use in practical chemistry are based upon this
division. However, we prefer to start from other con-
siderations. In disordered and mobile media, as liquids
are, each molecular component feels the effects of
interactions with other partners. Some of these interac-
tions are local, others can be called non-local.

The non-local interactions are, to a good extent, de-
scribed by the continuum model, which is an integral
model. I shall not consider these interactions any more
here. More detailed models for these non-local interac-
tions are necessary for studies of systems that have a
large amount of matter in discrete form.

Local interactions can also be split down, into labile
and persistent interactions. This distinction, which has a
dynamical connotation, is apparently based on the
strength of the interaction, but other more subtle factors
play an important role:

– Labile interactions must be averaged, and continuum
models automatically do this.

– Persistent interactions can be described by explicitly
including both partners in the solute model, but here
a further distinction can be made. The effective
Hamiltonian used in good continuum models actu-
ally describes all of the interactions between partners,
certainly not at the same level as a well performed
and complete quantum mechanical description, but
at a level that often turns out to be sufficient.
Therefore, we have to introduce a division among the
persistent interactions, into specific and non-specific
persistent interactions.

Table 7. The solvent shift for
the14N NMR shielding (ppm) Solute Solvent n of added

molecules
Computed Experimental

value
Continuum
contribution

(1,2)Diazine Water 1 41.92 41.55 12.4
(1.3)Diazine Water 2 15.93 16.84 3.2
(1,4)Diazine Water 2 16.27 16.85 2.7
(1,2)Diazine DMSO 0 11.26 9.46 11.26
(1.3)Diazine DMSO 0 2.61 3.60 2.61
(1,4)Diazine DMSO 0 2.26 3.17 2.26
(1,2)Diazine Acetone 0 12.29 14.38 12.29
(1.3)Diazine Acetone 0 2.26 3.11 2.26
(1,4)Diazine Acetone 0 1.94 2.71 1.94
Pyridine Water 1 )30.0 )29.70 10.0
Pyridine CH3Cl 0 )13.97 )14.01 13.97
CH3CN Water 0 )16.79 )17.2 )16.79
CH3CN CH3Cl 6 )6.32 )6.2 +0.2
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The solvent molecules added to the solute should
address the description of specific-persistent interac-
tions. The key point is that the definition of such inter-
actions strongly depends on the property and it is
therefore not strictly related to the strength of the
interaction or to the dynamical permanence of the
interaction, which is another concept. But what opera-
tive method can we use to introduce this distinction to
actual cases?

We have shown a way to proceed in the preceding
pages. The basic criterion is the following: a solvent
molecule causing interactions that are not specific-per-
sistent can be eliminated from the model without detri-
ment to the computational result, or conversely, when
added to a simpler model it does not improve the result.
We prefer to use the second approach: from simpler to
more complex models.

Simplifying the QM region

As remarked at the beginning of the section before last,
continuum models permit both the enlargement and the
reduction of the region described at the highest QM
level. We have so far considered enlargements, and will
now move on to look at reductions.

The more direct motivation for exploring reductions
is related to the size of the solute M. When the size is too
large, a full QM description of the solute becomes
impossible, and alternative descriptions must be devel-
oped. However, later in this section we will encounter
other motivations for controlled reductions in the QM
part of the model.

Linear scaling of the solvation procedure

When the size of the solute is large, there are problems;
both with the description of M and in its solvation. The
problems related to the description of a large isolated
molecule are well-known in quantum chemistry, and
there is no reason to delve any further into this point.
Let me comment, in contrast, on some technical points
of the solvation procedure.

I will consider PCM codes in the following (as I did in
the preceding sections), but I should remark here that
the SCRF codes of Nancy face similar problems, even if
expressed in a different way.

In standard PCM, to solve the nonlinear problem of
the definition of the solute-solvent interaction potential
we use a formula based on the solution of a set of linear
equations, each containing T elements, where T is the
number of apparent surface point charges (or tesserae)
employed to describe the apparent surface charge dis-
tribution. The number T of point charges is roughly
proportional to the molecular surface S (in standard
calculations T=2.55 S, with S measured in Å2) and has
a more complex relationship with the number of elec-
trons N of the molecule: T is proportional to Nb, where

b ranges from 1–2/3. To solve the linear equations we
use an inversion of the matrix of the coefficients, which
has dimensions T·T. The procedure therefore scales as
T3, and we may conservatively say as N3 too. This ma-
trix inversion is performed just once in the whole cal-
culation, and for small molecules the cubic dependence
on N does not represent a computational problem. On
the other hand, when moving to large molecules it does
constitute a serious bottleneck. Over the years we have
developed several alternatives to this standard procedure
that have not been inserted in distributed codes for
various different reasons, but we state here that we do
have efficient, tested linear and parallelized codes which
are based on semi-iterative procedures performed with
the aid of a generalized discrete interpolative scheme
(GDIIS) [66], which are very effective in reducing com-
putational times [67, 68].

I report here on some examples of computational
times. Table 8 compares the computational times for the
solvation of a set of BCN nanotubes with stoichiometry
B12kC24kN12kH12 (N in the table is the number of atoms)
performed (Case A) with the DIIS linear scaling, and
(Case B) with the standard inversion matrix technique.
T is the number of point apparent charges; times are
given in seconds and refer to the calculation of the sol-
vation energy (electrostatic term alone) performed with
a PC (Pentium II 400 MHz). The data are drawn from
[68].

It is clear from looking at the table why we have not
performed the inversion matrix calculations for larger
values of k.

The scaling of times are given by fits with the fol-
lowing equations:

Case A: t=a+bT, with a ¼ 36:50; b=0.0269;
r=0.9992

Case B: t=a+bT3, with a=2.04; b=0.90·10)7; r=
0.9987

Similar scalings have been found with other large
molecular systems.

The most recent implementations have further im-
proved performances. For the calculation of pKa of
residues in the protease inhibitor turkey ovomucin third
domain (a 56 residues protein), described with a hybrid
QM/MM model imbedded into a PCM surface, the code
elaborated by Pomelli reduces the time for the electro-
static part to about 22 s and the whole computational
time to about 150 min (on a parallel four CPU RS/

Table 8. Comparison of computational times for the calculation of
solvation energy for a set of BCN nanotubes

k N T Time for
Case A (s)

Time for
Case B (s)

1 60 2099 22 891
2 108 3472 54 3672
3 156 4841 95 10208
10 492 14501 352 n.a
20 972 28301 3008 n.a
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600 44P 70 machine) [69]. We may therefore conclude
that the bottleneck problems with the calculation of the
solute-solvent interaction potential for large solutes have
been greatly reduced.

The computational details we have reported consti-
tute a preliminary step in the development of models for
large solutes. Of course, full QM calculations on a large
solute are far more computationally demanding than the
calculation of the interaction potential.

For some problems of chemical interest, like the
study of conformations of proteins, the use of MM
descriptions for the whole solute could be employed.
Practically all of the PCM versions developed in the past
few years have also been tested with MM calculations,
with fairly good results, and the same happened, I
assume, with the tests done with other continuum codes.
What PCM lacks in the present version is an efficient
code to describe polarization effects in large MM sys-
tems (but we are working on it!).

Full MM descriptions are however limited to a small
part of the solvent effects of interest. MM models in
which one part of the system is treated at a given (and
relatively good) QM level, while the other parts are
treated at lower levels are more flexible. Years ago we
suggested [70] introducing a distinction between two
types of models of this kind. We suggested that those in
which the partition between high and low level parts
requires the breaking of a covalent bond should be
called hybrid models, and those in which the partition is
made at the level of non-covalent interactions should be
known as combined models. Combined models are often
used in the study of liquids. The QM/MM simulations
are based on combined models in which the solute M is
treated at the QM level, while the solvent molecules are
described with classical MM potentials. The clusters
MSm introduced in the section before last can be treated
in a similar way. The m solvent molecules, or a portion
of them, can be described at a lower level. It is clear that
with this remark we are introducing more complex for-
mulations of this strategy, because the clusters we con-
sidered in that section are immersed within a continuum
and a complete reduction of the m solvent molecules
of the cluster has no effect on the search for specific-
persistent interactions. An example of hybrid QM/MM
with the inclusion of continuum solvent effects was given
above, in [56].

However, to progress with this discussion it is better
to speak of layered or hierarchical models, in which is
possible to introduce a variety of partitions of both
combined and hybrid type, to be selected and defined in
the appropriate way according to the scope of the study.

The ONIOM-PCM layered model

Layered models offer remarkable flexibility and can be
used for a wide variety of scopes in addition to the
description of large solutes. Although we will now report

on some examples based on Morokuma’s ONIOM
hybrid method [71], other layering methods could of
course be used instead; the excellent performances of the
methods developed by the Nancy school are well-known
[72].

In principle, ONIOM’s structure allows us to use an
indefinite number N of layers, that may be denoted by
separating the acronyms indicating the level of each
layer with a slash. For example, QM1/QM2/MM is a
three-layer model in which the whole molecular system
is first described at the lower level (in this case MM), and
then refined by adding elements described at the pre-
ceding higher level (and by subtracting the same ele-
ments described at the lowest level), in a sequence of
processes ending with the highest level. A model with
N layers needs 2N)1 subcalculations. The procedure is
simple, but the description will be clearer with an
example.

Let me use Morokuma’s terminology applied to a
two-level ONIOM. The whole real system is described at
a relatively low level (there is complete freedom in
selecting this lower level), and the molecule corre-
sponding to the fragment of the system under scrutiny is
described both at the same low level, and at the higher
level at the desired accuracy. This fictitious molecule is
called the model. All of the desired properties are com-
puted using the same scheme, namely as the combina-
tion of three terms: the first regarding the whole real
system at the low level, subtracting the model at the low
level, and adding the model at the high level. The energy,
for example, can be written in the following form:

EONIOM ¼ Ereal, low � Emodel, low þ Emodel, high

and a property P in the following form:

PONIOM ¼ P real, low � Pmodel, low þ Pmodel, high

The low level description of the real system represents
a kind of background, modified by a kind of replace-
ment of the low level description of the region of interest
with a higher level description. We are skipping over the
description of other details here, such as how gradients
are defined.

We have implemented ONIOM-PCM solvation codes
[73] that offer four different schemes for the definition of
the solute-solvent interaction potential in the distributed
version of the program [74]. Each scheme has different
advantages and shortcomings, related in part to com-
putational considerations. I have to remark, in fact, that
ONIOM-PCM codes are provided with an analytical
energy derivative with respect to the nuclear coordi-
nates, and this added feature often influences the deci-
sion one has to make about the optimal computational
strategy to adopt.

We have used ONIOM/PCM so far to explore the
performance of the method and to test its usefulness for
the interpretation of properties. In fact, ONIOM offers
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as yet unexplored possibilities for exploring intramo-
lecular effects as well as intermolecular effects (in par-
ticular solvent effects), because it offers the possibility of
highlighting one or more groups within the molecule (or
the cluster) with respect to the others.

The first results have been very positive. ONIOM-
PCM has been applied to the MSm clusters we have
already discussed. The analyses considered in the pre-
vious section, regarding the search for specific-persistent
interactions, have been repeated using QM1/QM2/Cont
descriptions, with the high level regarding M only, with
very good results. The values reported in Table 7, to give
a numerical example, have been reproduced with devi-
ations not larger than 0.1–0.2 ppm in the computed
solvent shifts of the nuclear shielding. This means that
the quantum effects found with this analysis are robust
enough to be well-described at a lower QM level. In
addition, this finding can be exploited to reduce com-
putational costs in further studies.

ONIOM and ONIOM-PCM have been shown to be
good at describing intramolecular effects, and the
influence the solvent has on these effects. In the paper
that presented the method [73], we considered a mero-
cyanine molecule, H2N(CH2)3CHO, both in gas phase
and in aqueous solution. Merocyanines present a feature
of great importance for the non-linear optical properties
exhibited by this class of molecules. The –(CH2)n– bridge
between acceptor and donor groups, which is formally
described as a sequence of alternate single and double
bonds, actually assumes an intermediate structure
among the two extremes, in which there is a partial
delocalization of the p electron system. The degree of
this delocalization can be measured by a numerical
parameter, the bond length alternation (BLA), which
depends on the nature of the acceptor and donor groups
for molecules in the gas phase, and on the length of the
carbon chain. It is a property clearly dependent on
intermolecular interactions involving the whole mole-
cule. BLA is also highly sensitive to the nature of the
solvent: the time dependent hyperpolarizabilities (and so
the related nonlinear optical properties) are strongly
connected to the BLA value and are so strongly
dependent on the solvent.

We performed a sequence of ONIOM and ONIOM-
PCM calculations using increasing portions of the mol-
ecule, starting from H2NH and moving on to
H2N(CH2)2H, H2N(CH2)H, and so on, as the high-level
model. Correct BLA values are recovered in parallel both
for the gas phase and the solution, indicating the collec-
tive nature of solvent effects on this property. Additional
calculations have been performed on the 15N nuclear
shielding which also show the collective influence of other
groups and of the solvent on this property.

More complex studies using ONIOM and ONIOM-
PCM in parallel have been initiated in recent times,
mostly by B. Mennucci and C. O. da Silva. I cannot
give details of as yet unfinished investigations, but I can
confirm my initial opinion that ONIOM hybrid models
in solution are very promising analytical tools.

Metal surface enhanced properties and layering of other
systems

The concept of layering descriptions of the whole mac-
roscopic system into portions treated at different levels
can be applied in a very large variety of ways, and for a
very large variety of phenomena.

I will not express my personal views on general
strategies for the use of layered models in ‘‘complex
systems’’ here (it would take too long). I move imme-
diately on to an example, from which we have obtained
very good results in the last few years, and one that can
be used to better appreciate the potential of continuum
methods beyond the realm of isotropic solutions.

It is experimentally well-known that metal specimens
can strongly modify the intrinsic characteristics of an
adjacent molecule when the composite system is sub-
jected to an appropriate external electromagnetic field.
Since 1979 these properties have been known as surface
enhanced. The most famous property is of this type is
surface enhanced Raman scattering (SERS), but many
others have been experimentally studied and theoreti-
cally analyzed.

In Table 9, I report a list of properties of this type,
both those on which we have sizable results and those on
which studies are under completion or simply planned.

The number of properties is too large to give a more
detailed description of the different phenomena here, to
describe the experimental conditions in which these
effects can be observed, and to explain the importance
they play in a better understanding of the behavior of
condensed media and technological applications.

It is sufficient to say that electromagnetic theory [75]
gives a unifying view of these phenomena. The proper-
ties can be grouped into three classes, depending on the
presence of: (a) radiation entering the system (SEEA,
SEIRA, and SEPTA); (b) radiation coming out of the
system (SEET, via luminescence), or; (c) both (SERS,
SEHRS SEHG, and SESFG).

The electromagnetic theory I have quoted explains
the phenomena in terms of collective resonances of the
electron gas of the metal (surface plasmons) which for
opportune morphologies of the metal specimen can
create an evanescent electromagnetic field localized in
the proximity of the metal surface. A molecule close to
the surface of such a portion of the metal specimen feels

Table 9. Acronyms of the most important surface enhanced phe-
nomena

Acronym Full name

SEEA Surface enhanced electronic absorption
SERS Surface enhanced Raman scattering
SEIRA Surface enhanced infrared absorption
SEHRS Surface enhanced hyper Raman scattering
SEEET Surface enhanced electronic energy transfer
SESHG Surface enhanced second harmonic generation
SESFG Surface enhanced sum frequency generation
SETPA Surface enhanced two-photon absorption
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a local field more intense than the incident one, so its
effective response will be greatly amplified. Many other
details should be added to give a reasonable account of
this complex theoretical description of the essential
aspects of these phenomena, but the interested reader
will find them in the cited review.

What prompted me to remark upon this is that this
theory neglects several aspects of the phenomena,
grouped under the title of ‘‘chemical mechanisms’’,
which are not analyzed. Actually many aspects are
hidden under this collective title, and all of them are of
interest to chemists. Why are some responses of the
chromophore enhanced and others not? What combi-
nation of solvent, dye and metal must be chosen to have
a strong enhancement at a given frequency? What must
the local and the global morphology of the metal spec-
imen be to give a strong effect? And so on. Clearly there
is the need for more detailed modeling, performed from
a ‘‘chemical’’ viewpoint.

To this end the layered models may be of consider-
able help. We cannot delve deeper into our models here
due to lack of space, so we shall move on to briefly
summarize one such model that has reproduced the most
intense SERS signals detected over the past few years
quite well [76].

The material part of the model system is composed
of a cluster of metal particles within a liquid, to which
a molecular chromophore is added. The metal cluster is
composed of a variable number of spherical particles,
all with the same diameter. To be in agreement with
experiments, the number of spheres has been set in the
range 5–1000, and the sphere radii in the range r=
5–20 nm. The metal clusters are statistical aggregates,
in a mono-dispersed distribution. Each cluster has its
own geometry, but all clusters in a given experiment
have the same fractal dimension (the fractal dimension
is dictated by the fabrication technique of the cluster).
The liquid is modeled by a continuum dielectric char-
acterized by a dielectric constant �(0) and by a dielec-
tric function �(x) (we need to use a non-equilibrium
description of solvent effects to take into account the
frequency dependence of the chromophore response
under the combined action of the external elec-
tromagnetic field and of the radiation coming from
the chromophore). The molecular chromophore is
described at the B3LYP level by a basis set of
reasonable quality (found to be sufficient to describe
Raman intensities in isotropic liquids [77, 78]).

The strategy for the investigation may be decom-
posed into several steps:

a. To submit the metal cluster to an electromagnetic
field of a given frequency, and to compute the eva-
nescent field on the various regions of the cluster.

b. To identify the surface regions in which the evanes-
cent field, (and then the local field) has higher values.
These portions of the surface are called ‘‘hot spots’’,
and are the regions in which the enhancement is
present. The number of hot spots, classified according

to their intensity and their local morphology (shape
and size), are collected for further analyses.

c. To insert the chromophore into the material model,
placing it at appropriate positions (near the hot spots,
but for control also in other places), and to compute
vibrational frequencies and Raman intensities for
each case.

d. To analyse.

For step (a), a low level description of the cluster
system may be sufficient: we have used a dielectric
description of the metal, with polarization expressed in
terms of local Langevin dipoles centered on each metal
sphere. Also, here the description of the liquid can be
kept at a level lower than in the other PCM calculations
considered in this paper, but the number, strength, and
location of hot spots are sensitive to the solvent dielec-
tric properties.

When the chromophore is placed at a hot spot (or at
other regions of the metal surface) the description of the
local region of the metal must be refined. A local spot is
composed of a limited number of spheres (typically
3–4 spheres), in a linear arrangement parallel to the
direction of the incident polarization. The solvent-
exposed surface of these spheres is tessellated with the
recipes used by PCM for the study of molecular solva-
tion effects, and the same is done for the liquid encircling
the chromophore.

The results have been quite satisfactory. Experimen-
tal data for Ag and Au clusters in methanol-water
mixtures [79] have been satisfactorily reproduced. The
dissection of the huge enhancement factors permitted by
these detailed calculations has given a rationale of the
effects, expressed as the combination of three terms
having a different physical origin.

There is no need to give more detailed information
about either the results or the numerous parameters we
investigated in the analyses. To give an idea of the
complexity of the scanning of the chemical variables, it
is sufficient to say that we have examined clusters of
seven metals and two semiconductors, that we have
systematically varied the size and number of the
spheres that define clusters, and that statistical averages
of the performances of clusters have been performed
for material systems composed of a fixed number of
spheres (2000, say, which may consist of two clusters
composed of 1000 spheres or 100 clusters composed of
20 spheres for instance). Readers wishing to find more
information on this are referred to an overview of
molecular properties in solution [80], to the original
paper [76], and for more details still to Stefano Corni’s
doctoral thesis [81].

I hope that I have demonstrated, with this relatively
long (albeit incomplete) summary of a single research
project, that the layered formulations of the model
can be exploited, and that continuum methods can be
extended considerably beyond the realm of isotropic
dilute solutions, to treat problems of chemical interest
even for domains unfamiliar to standard chemistry.
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Future prospects for continuum methods

In the preceding pages I considered some aspects of the
continuum solvation theory that impact on research
fields in which continuum models will presumably play a
more important role in the near future than at present.

The field of molecular properties, and of related
physico-chemical experiments (especially of the spec-
troscopic type) is enormous, and it is only very recently
that researchers investigating molecular QM have
obtained computational tools that are efficient and
reliable enough to give accurate descriptions, interpre-
tations and predictions for the more complex phenom-
ena of this type. In the notes for a course I give at the
University of Pisa, I present more than 100 properties
that can be examined with the available theoretical QM
tools, and the number is increasing every month.

In the last part of the preceding section, I gave an
example of the application of continuum methods to
‘‘complex systems’’, centered on their application to a
specific type of property. Complex systems can be
defined as composite systems in which the overall
behavior is very different from that of the isolated
components that comprise the system. Let me stress
that the variety of complex systems is quite large, and
this variety represents a challenge to the development
of procedures that are able to describe properties of
different types, modified in different ways in the various
complex systems. As an example, included among these
complex systems are apparatuses created to get more
detailed experimental information on the properties of
material systems subjected to external excitations; in
fact we are seeking in a sizeable, and increasing,
number of cases the responses of apparatuses defined at
the atomic level. We may unify material systems and
experimental tools into a unique subject of research
performed using quantum mechanical approaches. It is
an interesting perspective.

I have here put (what I believe to be) due emphasis on
response properties, but this field is just one of the areas
in which continuum models can be profitably used.

Research in chemistry, physics, and molecular biol-
ogy is being directed more and more toward the study of
complex systems in which the properties of molecular
components are heavily modified by the system, from
heterogeneous catalysis to biological light harvesting (to
give two examples for which model studies are currently
feasible). This is another enormous field open to theo-
reticians that could exploit the positive features of con-
tinuum models.

I have only touched on another field, that of the study
of large molecular systems, limiting myself to some
comments on a technical aspect of the problem. One of
the main advantages of continuum methods is the strong
reduction in the number of degrees of freedom of the
system they permit. This reduction can be controlled,
modified or tempered with ease, and this is an important
factor that suggests that continuum methods should
have a brilliant future in this field.

A topic of central interest in chemistry is that of
reaction mechanisms. So far I have not considered this
very important area in which positive results have been
reached using continuum models: an example is given by
the results of the Nancy school. There is now the ten-
dency to use discrete molecular simulations for the study
of mechanistic processes. In some cases, this means, in
my opinion, spending more computer time than is
strictly necessary, but this is not the point I want to
consider here. In the study of chemical reactions in
solution, is easy to use the interpretative models created
for molecular mechanisms in the gas phase. In particu-
lar, the definition of the transition state geometry (and
of the aspects of the reaction deriving from this basic
concept) is often quite arbitrary, because the molecular
hypersurface in full discrete models presents a large
number of almost equivalent points eligible for an
approximate description of the transition state. In some
cases this blurring of the definition can be accepted, in
other cases it cannot. It would be better to adopt a
scheme of controlled reduction in the degrees of free-
dom, similar to that I described in the section before last
for the observables. In this specific context continuum
models play an essential role.

Most chemical reaction studies are performed using
models that are intrinsically limited to small systems;
other studies are performed with brute force methods by
examining the evolution of the system as described by
molecular dynamics simulations. Both approaches are
unsatisfactory, for different reasons.

What we need for the dynamics of the reactions, as
well as for the dynamics of other molecular processes, is
the availability of computational methods accurate
enough to reach a precision sufficient to preserve the
essential features of phenomena of real chemical inter-
est, but simple enough to permit analyses and interpre-
tations. Here again a controlled reduction in the number
of the degrees of freedom given by continuum models
may play an important role.

In this paper I have not mentioned several aspects
of the continuum methods that have already been
developed and amply used, and which will play an
important role in the development of continuum or
semi-continuum methods, such as the use of nonequi-
librium solvation to name an example independently
elaborated by the Pisa and Nancy groups. Many other
proposals have been made in the last few years by
others, such as Basilevsky 82, 83], Borgis [84, 85, 86],
and Frediani [87], to name but a few, who are modi-
fying some basic aspects of the continuum models.

In one section of this paper I underlined the need for
a continuous critical examination of the existing imple-
mentation, with examples drawn from the basic model,
but it should be clear that this need is even more urgent
for the far more complex formulations that people
working on the continuum theory are now working on.

To conclude, allow me to reiterate the salient points
of this review. Theoretical and computational chemis-
try must pursue two goals: to give a description and
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interpretation of phenomena of chemical interest, and
to provide representations of phenomena not yet
studied, or that are impossible to study with experi-
mental laboratory tools. The two goals must not be
confused, but to some extent they may be pursued in
parallel. Continuum approaches that are not limited to
the liquid phase but can be extended to other types of
condensed matter have some characteristics that are
useful for both theoretical analysis and chemical com-
putation. Such characteristics are related to the con-
trolled reduction in the number of degrees of freedom
of the system one has to monitor during the study. I
feel confident that the advantages of exploiting these
characteristics will attract many young people into this
area of scientific research, bringing with them enthusi-
asm and innovative ideas.
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